

LEUVEN

Divertor Design through Shape Optimization

W. Dekeyser¹, D. Reiter², M. Baelmans¹

- Department of Mechanical Engineering, Katholieke Universiteit Leuven, Belgium
- ² Institute of Plasma Physics, Forschungszentrum Jülich GmbH, EURATOM Association, TEC, Germany

Overview

- Introduction
- Target design for homogeneous power load
- Test problem
- Conclusion

2

Introduction

Heating power of next generation fusion reactors

Device name Divertor: SD/XD	Heating power P (MW)	Major radius R (m)	P_{heat}/R ITER=1
C-Mod	3	0.6	0.26
DIII-D	10	1.6	0.31
JET	17	3	0.31
JT-60U	17	3.4	0.26
ITER	120	6.2	1
EU-A	1246	9.6	6.8
EU-B	990	8.6	6.1
EU-C	792	7.5	5.6
EU-D	571	6.1	4.9
ARIES-AT	387	5.2	3.9
ARIES-RS	515	5.5	4.9
Slim-CS	645	5.5	6.2
CREST	691	5.4	6.7

Challenging divertor design problem

Large number of design variables

(Parameterized) shape of divertor, currents through divertor coils,...

Complex physical model Time consuming simulations

Fluid plasma model (e.g. B2) kinetic neutrals (e.g. EIRENE)

http://www.iter.org

Physics, material and engineering constraints

E.g. core stability, peak heat flux limits, neutron shielding,...

Divertor design in an optimization framework

- Incorporate design requirements in a cost functional
- Find the optimal design using gradient based optimization algorithms
- Advantages:
 - Automated design process
 - Efficient solution using advanced adjoint methods
 - computational time independent of number of design variables!
 - Natural framework to include various design constraints

Overview

- Introduction
- Target design for homogeneous power load
- Test problem
- Conclusion

6

Motivation

- Energy fluxes in F12 ITER geometry
 - Energy fluxes strongly peaked
 - $> 10 MW m^{-2}$

September 20, 2011

Cost functional

$$J(\mathbf{q}, \phi) = \frac{1}{2} \int_{\mathbf{T}(\phi)} (Q - Q_{\mathrm{d}})^2 \, \mathrm{d}\sigma$$

September 20, 2011

Shape parameterization

$$J(\mathbf{q}, \phi) = \frac{1}{2} \int_{\mathbf{T}(\phi)} (Q - Q_{\mathrm{d}})^2 \, \mathrm{d}\sigma$$

Model equations

• State equations for $\mathbf{q} = (n_{\rm i}, u_{||}, T, p_{\rm n})^{\rm T}$:

$$B_{\Omega}(\mathbf{q}) = \frac{1}{\sqrt{g}} \frac{\partial}{\partial \theta} \left(\frac{\sqrt{g}}{h_{\theta}} C(\mathbf{q}) - \frac{\sqrt{g}}{h_{\theta}^2} D^{\theta}(\mathbf{q}) \frac{\partial \mathbf{q}}{\partial \theta} \right) - \frac{1}{\sqrt{g}} \frac{\partial}{\partial r} \left(\frac{\sqrt{g}}{h_r^2} D^r(\mathbf{q}) \frac{\partial \mathbf{q}}{\partial r} \right) - S(\mathbf{q}) = 0$$

with

$$S_{\mathbf{n}} = \begin{pmatrix} n_{\mathbf{i}} n_{\mathbf{n}} \langle \sigma v \rangle_{\mathbf{i}} - n_{\mathbf{i}}^{2} \langle \sigma v \rangle_{\mathbf{r}} \\ -m n_{\mathbf{i}}^{2} (\langle \sigma v \rangle_{\mathbf{r}} + \langle \sigma v \rangle_{\mathbf{c}}) u_{||} \\ -E_{\mathbf{i}} n_{\mathbf{i}} n_{\mathbf{n}} \langle \sigma v \rangle_{\mathbf{i}} \\ n_{\mathbf{i}}^{2} \langle \sigma v \rangle_{\mathbf{r}} - n_{\mathbf{i}} n_{\mathbf{n}} \langle \sigma v \rangle_{\mathbf{i}} \end{pmatrix}, \quad S_{z} = \begin{pmatrix} 0 \\ 0 \\ -c_{z} n_{\mathbf{i}}^{2} L_{z}(T) \\ 0 \end{pmatrix}, \quad S_{p} = \begin{pmatrix} 0 \\ -\frac{b_{\theta}}{h_{\theta}} \frac{\partial p}{\partial \theta} \\ 0 \\ 0 \end{pmatrix}$$

Analytical approximations for ionization, recombination, and CX rates and radiative loss function (Carbon)

Optimization problem

Cost functional:

$$J(\mathbf{q}, \phi) = \frac{1}{2} \int_{\mathbf{T}(\phi)} (Q - Q_{\mathrm{d}})^2 \, \mathrm{d}\sigma$$

Lagrangian function to enforce state equations constraints:

$$L(\mathbf{q}, \phi, \mathbf{q}^*) = \int_{\mathrm{T}(\phi)} J_{\sigma}(\mathbf{q}, \phi) d\sigma - \int_{\mathrm{V}(\phi)} (\mathbf{q}_{\Omega}^*)^{\mathrm{T}} B_{\Omega}(\mathbf{q}, \phi) d\Omega - \int_{\mathrm{S}(\phi)} (\mathbf{q}_{\sigma}^*)^{\mathrm{T}} B_{\sigma}(\mathbf{q}, \phi) d\sigma$$

Optimality conditions:

$$\begin{cases} L_{\mathbf{q}^*}(\mathbf{q}(\phi), \phi, \mathbf{q}^*) &= 0 \text{ state equations} \\ L_{\mathbf{q}}(\mathbf{q}(\phi), \phi, \mathbf{q}^*) &= 0 \text{ adjoint equations} \\ L_{\phi}(\mathbf{q}(\phi), \phi, \mathbf{q}^*) &= 0 \text{ design equation} \end{cases}$$

Adjoint equations and gradient of cost functional

Adjoint equations

$$0 = -C_{\mathbf{q}}^{\mathrm{T}} \frac{1}{h_{\theta}} \frac{\partial \mathbf{q}_{\Omega}^{*}}{\partial \theta} - \frac{1}{\sqrt{g}} \frac{\partial}{\partial \theta} \left(\frac{\sqrt{g}}{h_{\theta}^{2}} D^{\theta} \frac{\partial \mathbf{q}_{\Omega}^{*}}{\partial \theta} \right) - \frac{1}{\sqrt{g}} \frac{\partial}{\partial r} \left(\frac{\sqrt{g}}{h_{r}^{2}} D^{r} \frac{\partial \mathbf{q}_{\Omega}^{*}}{\partial r} \right)$$
$$+ \frac{1}{h_{\theta}} \frac{\partial \mathbf{q}^{\mathrm{T}}}{\partial \theta} \left(D_{\mathbf{q}}^{\theta} \right)^{\mathrm{T}} \frac{1}{h_{\theta}} \frac{\partial \mathbf{q}_{\Omega}^{*}}{\partial \theta} + \frac{1}{h_{r}} \frac{\partial \mathbf{q}^{\mathrm{T}}}{\partial r} \left(D_{\mathbf{q}}^{r} \right)^{\mathrm{T}} \frac{\partial \mathbf{q}_{\Omega}^{*}}{\partial r} - S_{\mathbf{q}}^{*} \mathbf{q}_{\Omega}^{*}$$

- Reversed characteristics!
- Gradient of cost functional
 - Velocity method for limits of integration

$$\hat{J}'(\phi)\delta\phi = L_{\phi}(\mathbf{q}(\phi), \phi, \mathbf{q}^{*}(\phi))\delta\phi
= \int_{\mathbf{T}(\phi)} (J_{\sigma,\phi}(\mathbf{q}, \phi)\delta\phi + \nabla J_{\sigma}(\mathbf{q}, \phi) \cdot \mathcal{V} + J_{\sigma}(\mathbf{q}, \phi) (\nabla \cdot \mathcal{V} - D\mathcal{V}\nu \cdot \nu)) d\sigma -
\int_{\mathbf{V}(\phi)} (\mathbf{q}_{\Omega}^{*})^{\mathrm{T}} B_{\Omega,\phi}(\mathbf{q}, \phi)\delta\phi d\Omega - \int_{\mathbf{S}(\phi)} (\mathbf{q}_{\Omega}^{*})^{\mathrm{T}} B_{\Omega}(\mathbf{q}, \phi)\mathcal{V} \cdot \nu d\sigma -
\int_{\mathbf{S}(\phi)} (\mathbf{q}_{\sigma}^{*})^{\mathrm{T}} (B_{\sigma,\phi}(\mathbf{q}, \phi)\delta\phi + \nabla B_{\sigma}(\mathbf{q}, \phi) \cdot \mathcal{V} + B_{\sigma}(\mathbf{q}, \phi) (\nabla \cdot \mathcal{V} - D\mathcal{V}\nu \cdot \nu)) d\sigma$$

Solution algorithm

Solution algorithm: one-shot method

THOLIEKE UNIVERSITEI

Overview

- Introduction
- Target design for homogeneous power load
- Test problem

Conclusion

Test problem

- Outboard half of up-down symmetric connected double null divertor, modeled as cylindrical shell
- No flux expansion,...
- ITER-like parameters
 - Geometry:
 - Major radius 6 m
 - Core length 10 m
 - SOL width 0.1 m
 - Core density 2·10¹⁹ m⁻³
 - 50 MW input power from core
 - 30 m³ s⁻¹ thermal D₂ pumping speed

Grid and solver

- 130x40 grid
 - 80 design variables
- Poloidal grid lines aligned with magnetic field
- Radial grid lines deformed to match target surface
 - Explicit 9-point stencil for correct discretization of fluxes
- One-shot optimization algorithm

17

Initial configuration

Optimized Target Profile

⇒ V-shaped divertor targets

19 September 20, 2011

Interpretation of results

- Reduction of power flux density due to increase in target area
- Shift in neutral cloud towards the separatrix
 - Increased energy loss due to ionization
 - Increased energy loss due to impurity radiation
 - ⇒ Reduction of target temperature and power flux density

September 20, 2011

Initial configuration

Optimized

Energy sink neutral ionization (MW m⁻³)

- Shift towards separatrix
- ~5% increase total ionization energy loss

Energy sink impurity radiation (MW m⁻³)

- Shift towards separatrix
- ~10% increase total impurity radiation energy loss

Overview

- Introduction
- Target design for homogeneous power load
- Test problem
- Conclusion

Conclusions

- A framework for optimization based divertor design is set up
- Advanced adjoint methods allow for the solution of a complete optimization cycle in an equivalent CPU time of only a few forward simulations
- Using a strongly simplified edge model, representative design features are obtained, e.g. V-shaped targets

Future work...

- Divertor shape optimization
 - Fixed magnetic configuration
 - More complex parameterizations: shape of targets, dome, baffles,...
- Optimization of divertor magnetic configuration
 - Fixed divertor geometry
 - Control variables: currents through coils, location of coils,...
- Combined optimization
- More complete edge models

(http://www.iter.org)

(Ryutov et al., Phys. Plasmas 15, 092501 (2008).)

(Valanju et al., Fusion Eng. Des. 85, 46-52 (2010).)